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ABSTRACT 

Earlier efforts to define ideal composition dependence of the dielectric properties of 
binary mixtures of Onsager liquids have been extended to the case of mixtures of associated 
liquids. Two approaches have been adopted. One approach deals solely with bulk properties 
and closely resembles the treatment of non-structured binary mixtures. The other attempts to 
incorporate some of the simpler statistical concepts that are embodied in Kirkwood’s theory. 

INTRODUCTION 

In our efforts to establish a mkaningful procedure for analyzing and 
interpreting the composition dependence of the dielectric constants of 
binary hydroorganic systems, we have become interested in examining a 
number of plausible ways of defining “ideal” composition dependence [1,2]. 

While we are primarily interested in binary mixtures of associated (struc- 
tured) liquids, we found it to be appropriate to start our study of the 
concept of ideal dielectric behavior by examining the implications of the 
extensions of Onsager’s theory, which deals specifically with non-structured 
liquids, to describe binary mixtures [2]. 

Onsager’s model, as applied to a binary mixture, assumes that there is 
random spatial distribution of the molecules of the two components and 
that in the mixtures, as in the pure component liquids, there is random 
molecular orientation [3,4]. It would seem that this model is reasonably 
consistent with regular, but not necessarily thermodynamically ideal, mixing. 
For that reason, one might chose to adopt the term “dielectric ideality” to 
describe the condition represented by Onsager’s equation for a binary 
mixture. 
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A means of translating the dielectric constant of a polar liquid, in the 
general context of Onsager’s theory, into a quasi-thermodynamic molar 
dipolar free energy has been furnished by Frohlich [4,5]. In so far as 
Frohlich’s approach is acceptable, we found that it leads to the conclusion 
that a binary mixture of Onsager liquids has a non-zero excess dipolar 
internal energy [2]. 

Onsager’s theory provides a poor prediction of the dielectric constants of 
water and many of the polar organic liquids with which it is miscible. While 
numerous flaws have been identified in Onsager’s model, as applied to 
structured liquids, it would appear that the major shortcoming is the 
assumption that the relative orientations of neighboring molecules are 
completely random. 

In attempting to describe the dielectric or quasi-thermodynamic ideal 
composition dependence of the dielectric properties of mixtures of associ- 
ated liquids, we find ourselves with two options. One approach is to deal 
only with the bulk dielectric properties of the mixtures and to employ the 
same definitions of ideal composition dependence as were found to be 
appropriate in the case of mixtures of Onsager liquids. The alternative is to 
attempt to examine the concepts of ideality in the framework of some 
appropriate body of statistical theory. 

PURE ASSOCIATED LIQUIDS 

If Onsager’s theory may be regarded as being of zero order, the simpler 
theories of associated polar liquids might be described as being first-order 
elaborations. 

The earliest attempts to develop a dielectric theory, that makes allowances 
for the tendency of polar molecules to adopt energetically favored mutual 
orientations, retained Onsager’s cavity-in-a-continuum approach. The theory 
that was pioneered by Kirkwood [6] and subsequently embellished by 
Frohlich [5] led to the equation 

where D is the dielectric constant, v is the molar volume, 0, is the 
high-frequency dielectric constant of the sample liquid, p is the gas phase 
molecular dipole moment, g is the Kirkwood correlation factor for that 
liquid and e,, is vacuum permittivity. 

Equation (1) can be rearranged to give 

LbY2 -= 
9kTq, 

0) - QJ(2~ + &F = p 
D(& + 2)’ 

(2) 

where 7; is referred to as the molar orientational polarizability. 
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One notes that, in the case where g = 1, eqns. (1) and (2) are identical to 
the expressions derived from Onsager’s theory. Since Onsager’s model 
assumes random molecular orientations, it is argued that deviations of the 
value of g from unity are, in some fashion, measures of the effects of local 
structural order. 

While it is obvious that serious objections may be raised to the adoption 
of cavity-in-a-continuum models, it has been observed that the Kirkwood 
correlation factor cannot be dismissed as a mere artefact of that approach 
since expressions, which are algebraically equivalent to eqns. (1) and (2) 
have been derived from purely statistical first-order treatments [7]. It is 
appropriate to note, in that context, that Wertheim has suggested an 
alternative first-order statistical result [8]. 

A general interpretation that may be offered for the introduction of the 
correlation factor into eqn. (1) is that the polarization of an individual 
molecule in a polar liquid sample is due in part to its long-range interactions 
with the bulk of the sample and in part to short-range interactions with 
neighboring molecules with which it is to some extent structurally corre- 
lated. 

From statistical considerations, Winkelmann and Quitzsch have con- 
cluded that the molar dipolar free energy of a pure associated liquid is given 
by the expression [9] 

& = 
-RTLgp2(D- l)(D, +2) 

F9kTc,(2D + 0,) 
(3) 

If g = 1, eqn. (3) reduces to the form obtained from Frohlich’s interpreta- 
tion of the interactions between molecular dipoles and their reaction fields 
for the case of a pure Onsager liquid [4,5]. 

IDEAL BINARY MIXTURES OF ASSOCIATED LIQUIDS 

Our first concern was with the selection of a suigble analog to eqn. (l), to 
represent the ideal molar susceptibility, (D - l)V, of a binary mixture of 
associated liquids. From our considerations of mixtures of Onsager liquids 
[2], we feel that it is appropriate to write 

where PA may be evaluated from DA, DmA and VA, using eqn. (2). 
Alternatively, we may write the equation in a form which involves 

molecular dipole moments and the correlation factors: 
the 

(D_l)v=A~B 3x;$3uA;1) + xALgAdD(2D+1)(Dm;+2)2 

C73A 9kTc,(2D + D,,) 

(4b) 
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We noted, in ref. 2, that eqn. (4a) closely approximates the condition of 
mole fraction additivity of the molar susceptibilities of the pure compo- 
nents: 

(D-l)V=x*~*(D*-l)+xB~B(D,-l) (5) 

Equation (4b) contains reference to both g, and g,, which are related to 
the orientational correlation of like molecular pairs and might therefore be 
termed “self-correlation” factors. There is, however, no mention of any 
mutual correlation factor, gAB. As we pointed out in ref. 1, &a would need 
to be some kind of weighted average of g, and gB, for a binary mixture to 
be ideal. 

Winkelman and Quitzsch have described the role of a quantity g,a in the 
contexts of both the polarization [lo] and the dipolar free energy [9] of a 
binary mixture. It is our contention that there is a conflict of logic between 
those two papers and that the approach adopted in ref. 9 is the more correct. 
From that standpoint, one obtains 

+( XA~:+x~(gA-1)~2A)LD(2D+1)(D,A+2)2 
9kR,(2D + o,,)’ 

+ 2xAxB(gAB -1)~A~BLD(20+1)(DmA+2)(DmB+2) 

9k7&,(2D + 0,,)(2D + o,,) 
(6) 

Since eqn. (4) is a viable candidate as a definition of dielectric ideality (or 
regularity), equating the right-hand sides of eqns. (4b) and (6) provides an 
estimate of an ideal value for gAB: 

2(gAB- 1)P~P~(Dm~+2)CDm~+2) 

(20+o,A)(20+D~B) 

= c (gA-1)d(DmA+2)2 

(20+DmA)2 

(7) 
A+B 

which, in the event that DmA = DooB, reduces to 

(8) 

For modest differences in the high-frequency dielectric constants, g,, as 
estimated from eqn. (7) is virtually independent of composition and differs 
to only a modest extent from the value given by eqn. (8). 

For the case of a mixture of Onsager liquids, where all of the correlation 
factors equal unity, we argued that eqn. (4) represents a regular mixture, on 
the grounds that it is based upon the assumption that there is a random 
spatial distribution of the component molecules and random molecular 
orientations in both the pure components and their mixtures [2]. Equation 
(6) is also based upon the assumption of random spatial distribution. 
Deviations of the correlation factors of the pure components from unity, 
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whether positive or negative, imply a decrease in the orientational entropy. 
One might then regard the introduction of the quantity &a as an expedient 
to represent the condition of a zero excess orientational entropy and thus of 
regular mixing. 

An alternative means of defining dielectric ideality (or regularity), that we 
considered in our earlier papers [1,2], is the mole fraction additivity of the 
molar orientations pola~ab~ties of the pure components: 

F = x,Fi + x&j (9) 

Combining eqns. (8) and (9) leads to 

p=L[xA~~+~~A-1)x,2~:+x,(1z,+(~B-1)x,rcb2, 

+2xAxBI-1A~B(gAB - 1)]/9kTcil 00) 

In ref. 2, we considered two different ways of defining the molar orienta- 
tional pol~zability of a binary mixture. Equation (11) is a generalization of 
eqn. (21, involving the properties of the mixture: 

In-the case of a hypothetical ideal mixture, D might be derived from eqn. 
(4), V would be assumed to be the mole fraction adduct of 72 and vi and 
the high-frequency dielectric constant would be estimated using 

I& = ~X~~~~~~ + x~~~~~a)/~ 021 

The alternative is to assign to each molecular species its own high- 
frequency dielectric constant {and hence polarizability) and its own molecu- 
lar volume: 

A+B D(D,A + 2)2 

03) 

There are only small differences between the “ideal” molar orientational 
pol~zab~ities, estimated from eqns. (11) and (13). The two sets of values 
are identical in the case that DwA = L)ooB; they also equal the values obtained 
from eqn. (9). When DmA f DoDs, there are fairly large differences between 
the values obtained from the combination of eqns. (4a) and (11) and those 
obtained using eqn. (9). 

Equation (14) represents a quasi-thermodynamic definition of ideal mix- 
ing: 

YF = x,F,, + x& (14) 

where the molar dipolar free energy of pure component A, FPA, is defined 
by eqn. (3). 
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The molar dipolar free energy of an ideal mixture may thus be expressed 
as 

F,= -RT c 
x4Gwm4 - 1)(%4 + 2) 

A+B 7;9kT~a(2& + D,,) (15) 

Employing the logic of ref. 9, we may rewrite eqn. (15) in a form which 
involves the mutual correlation factor g,,: 

F,= -RT c (L(DA-1)(D,A+2)[xA&+x&-A--)&, 
A+B 

+XAXB~AdgAB - 1)]){~~9kTE,(20A+D,A)}-1 (16) 

Equating the right-hand sides of eqns. (15) and (16) leads to the following 
expression for gAB: 

tgA, _ q = (8, - l)dyA+ (8, - l)dyB 

(Y, + YB) 

where 

y = (fA-1)(D~~+2) 
A 

v,ot20A + DcoA) 

(17) 

The values of gAB obtained from eqn. (17) differ quite significantly from 
those of eqn. (8). 

An alternative expression for the molar dipolar free energy, which is 
based upon the theoretical arguments of Winkelmann and Quitzsch [9] is 

F,= -RT(D-1) 

c L(DmA + 2)[ xA/& + xi(gA - ‘)&I + xAxB(gAB - l)pApB] 

A+B F320 + D,,)9kTc, 

(18) 

Equation (18) may be used in two different ways. One may obtain 
estimates of the dipolar free energies making use of the dielectric constants 
from eqn. (4) and the g,, values of either eqn. (8) or (17). Alternatively, one 
may chose to use the equation to determine the values of gAB, which, 
together with the dielectric constants of eqn. (4), lead to the dipolar free 
energy estimates of eqn. (14). 

There are two additional ways in which we have attempted to estimate the 
molar dipolar free energies of binary mixtures without involving molecular- 
scale properties. Equation (19) was introduced in ref. 1 as a means of 
estimating the energies of real mixtures of known dielectric constant. In this 
context, it can be used with the “ideal” dielectric constants of eqn. (4): 

F = -RT(D- l)(D-D,) 
P 

N& + 2) 
+ A;BxAFpA(l - Ff/v) (19) 
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Equation (20) was adopted in ref. 2 for the case of binary mixtures of 
Onsager liquids: 

El< %A + 2) F,=-RT(D-1) c - 
A-+B vA(20 + &A) 

CALCULATIONS AND DISCUSSION 

We have calculated, from the properties of the pure liquids, ideal (or 
regular) values of dielectric properties for three binary hydroorganic sys- 
tems. Table 1 contains, for each system, three alternative estimates of ideal 
dielectric constants. It is seen that eqns. (4) and (5) provide virtually 
identical estimates in all three cases, but there are substantial differences 
between them and the values obtained from a combination of eqns. (9) and 
(11). These differences are less marked in the case of the acetonitrile-water 
system where the high-frequency dielectric constants of the pure compo- 
nents are nearer to being equal. 

Our reason for considering eqn. (4) as a means of defining dielectric 
ideality, is that it appears to be appropriate for mixtures of liquids in which 
there is random spatial distribution and random molecular orientation [4]. 
While the associated liquids with which we are presently concerned have 
non-random orientations, we would argue that the condition of regular 
mixing does not require any specific pure component characteristics and 
that eqn. (4) appears to represent a viable means of describing a binary 
system in which the molar entropy of mixing is represented by the expres- 
sion: 

A$= _R[XA ln(XA) +xB ln(X,)] (21) 

The fact that eqn. (4) is very closely approximated by eqn. (5) makes the 
latter an attractive choice for defining ideal dielectric behavior. It is simple 
to estimate excess molar susceptibilities, when experimental values of D and 
V are available. The mole fraction additivity of the orientational polarizibili- 
ties (eqn. 9) is more of an intuitive than a theoretically based definition of 
ideality. 

Table 2 contains a variety of values for the mutual correlation factors 
g,,. The values obtained using eqn. (7) are composition dependent but 
differ from the tabulated values by no more than 0.01. These values are seen 
to be very similar to those obtained using eqn. (8), implying that normal 
differences in the high-frequency dielectric constants have very little impact 
upon them. The differences between the values obtained using eqns. (8) and 
(17), respectively, are substantial. This is to be expected from consideration 
of the differences between the two weighting schemes. It appears to us that 
these differences underline the significant disparity between the definitions 
of ideality that are represented by eqns. (4) and (14). 
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TABLE 1 

Ideal dielectric constants 

x (1) D(I) DW D(M) 

Tertiary butanol (I) - water (2) 

t-BuOH: D = 12.47, D, = 1.9191, 7 (cm) = 94.97, p (D) = 1.65 

Water: D = 78.54, D, = 1.7761, v (cm-‘) =18.06, p (D) =1.85 

0.1 54.18 54.17 

0.2 41.02 41.01 
0.3 32.78 32.78 
0.4 27.14 27.13 

0.5 23.03 23.02 
0.6 19.91 19.90 
0.7 17.45 17.45 

0.8 15.47 15.47 
0.9 13.84 13.84 

Acetonitrile (1) - water (2) 

ACN: D = 35.95, D, = 1.8012, v (cm) = 52.87, p (D) = 3.92 

Water: D = 78.54, D, = 1.7761, V(cm-‘) = 18.07, p (D) = 1.85 

0.1 68.09 68.09 

0.2 60.55 60.55 

0.3 54.85 54.85 

0.4 50.38 50.38 

0.5 46.80 46.80 

0.6 43.85 43.85 

0.7 41.39 41.39 

0.8 39.30 39.30 

0.9 37.51 37.51 

Ethylene glycoi (1) - water (2) 

HOEtOH: D = 40.72, D, = 2.046, v (cm) = 62.068, p (D) = 2.28 

Water: D = 78.35, D, = 1.7766, v (cm-‘) = 18.068, p (D) = 1.85 

0.1 67.98 67.95 

0.2 61.00 60.96 

0.3 55.98 55.94 

0.4 52.19 52.16 

0.5 49.24 49.20 

0.6 46.86 46.84 

0.7 44.91 44.89 

0.8 43.29 43.27 

0.9 41.91 41.90 

55.32 
42.22 

33.81 

27.97 

23.67 
20.37 
17.77 

15.67 

13.93 

68.19 

60.68 

54.98 

50.51 

46.90 

43.94 

41.45 

39.34 
37.53 

69.15 
62.46 

57.40 
53.44 
50.27 

47.67 
45.50 
43.66 

42.08 

D(I), based on eqn. (4). D(II), based on eqn. (5). D(III), based on eqns. (9) and (11). 

TABLE 2 

Mutual correlation factors, g,, 

A Eqn. (7) Eqn. (8) 

t-BuOH 2.70 2.71 
ACN 1.24 1.24 
HOEtOH 2.90 2.87 

g(H,O) = 2.82 

Eqn. (17) Eqns. (14), (18) g, 

2.95 3.18-3.23 2.54 
1.55 1.56-1.57 0.82 
2.66 2.69-2.71 2.84 



191 

TABLE 3 

“Ideal” molar dipolar free energies 

x (1) Fp(I) <(II) @II) 

t-Butanol (I) - water (2) 

F, (t-BuOH) = -6.15 kJ mol-‘, F, (water) = -49.75 kJ mol-’ 
0.1 - 45.39 - 44.61 - 44.99 
0.2 - 41.03 - 39.64 - 40.30 
0.3 - 36.67 - 34.84 - 35.70 
0.4 - 32.31 - 30.22 - 31.19 
0.5 - 27.95 - 25.77 - 26.77 
0.6 - 23.58 - 21.49 - 22.44 
0.7 - 19.22 - 17.39 - 18.21 
0.8 - 14.86 - 13.46 - 14.08 
0.9 - 10.50 - 9.71 - 10.05 

F,(IV 

- 44.99 
- 40.60 
- 36.29 
- 32.00 
- 27.70 
- 23.40 
- 19.09 
- 14.78 
- 10.46 

Acetonitrile (I) - water (2) 

F’ (ACN) = - 21.65 kJ mol- 
0.1 - 46.94 
0.2 - 44.13 
0.3 - 41.32 
0.4 - 38.51 
0.5 - 35.70 
0.6 - 32.89 
0.7 - 30.08 
0.8 - 27.27 
0.9 - 24.46 

‘, r;; (H,O) = - 49.75 kJ mol-’ 
- 45.47 - 46.83 
-41.52 - 43.94 
- 37.92 - 41.08 
- 34.64 - 38.24 
- 31.69 - 35.43 
- 29.06 - 32.64 
- 26.74 - 29.87 
- 24.73 - 27.11 
- 23.04 - 24.37 

Ethylene glycol (I) - water (2) 

Fp (HOEtOH) = - 23.11 kJ mol- 
0.1 - 46.97 
0.2 - 44.32 
0.3 - 41.67 
0.4 - 39.02 
0.5 - 36.37 
0.6 - 33.72 
0.7 - 31.07 
0.8 - 28.41 
0.9 - 25.76 

‘, F, (H,O) = -49.62 kJ mol-’ 
- 47.39 - 46.85 
- 45.07 - 44.12 
- 42.67 - 41.43 
- 40.17 - 38.76 
- 37.58 - 36.11 
- 34.89 - 33.49 
- 32.10 - 30.87 
- 29.21 - 28.28 
- 26.21 - 25.69 

- 46.90 
- 44.08 
-41.27 
- 38.47 
- 35.66 
- 32.86 
- 30.06 
- 27.26 
- 24.45 

- 46.61 
- 43.88 
-41.25 
- 38.66 
- 36.07 
- 33.49 
- 30.90 
- 28.31 
- 25.71 

g(I), estimated using eqn. (14). 
F,(II), estimated using eqn. (18) (g,, from eqn. 8). 
F,(III), estimated using eqn. (20). 
F,(W), estimated using eqn. (19). 

Table 3 contains a number of different estimates of the molar dipolar free 
energies of the three systems. Of the four estimates, those corresponding to 
mole fraction additivity (eqn. 14) appear to us to be the most acceptable. 
The values in the columns headed F,(II) were obtained from eqn. (18) using 
the dielectric constants of eqn. (4) and the g values of eqn. (8). They differ 
quite significantly from the values of eqn. (14). We suggest that these values 
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correspond to the free energies of regular mixtures which are not necessarily 
ideal. 

It is appropriate to draw attention to an important distinction between 
the tertiary butanol-water and ethylene glycol-water systems, on the one 
hand, and the acetonitrile-water system on the other. It seems reasonable to 
assume that such self-correlation as exists in pure tertiary butanol and pure 
ethylene glycol involves hydrogen bonding (i.e. strong, parallel, dipolar 
correlation), which is consistent with g values substantially greater than one. 
In such cases, the assumption that the free energy decrease from the Onsager 
(random orientation) case is proportional to g - 1 would seem to be 
plausible. In the case of pure acetonitrile, however, the g value of 0.82, 
which might superficially appear to arise from a modest degree of antiparal- 
lel correlation, is more likely to be due to a combination of both parallel and 
antiparallel dipole o~entation~ correlation with the latter dominant. In 
either event, the existence of correlation ought to result in a free energy 
decrease instead of the increase predicted by eqn. (3). 

Equations (19) and (20) lead to free energy values which are closer to 
those of eqn. (14) than are the estimates of eqn. (18), but the differences are 
still fairly substantial. Each of the three equations (18-20) constitutes an 
attempt to represent a regular binary mixture. Equation (19) was introduced 
in ref. 1 as a rather simple means of modifying the expression for the dipolar 
free energy of a pure liquid in a manner that recognized the necessity of 
assigning each molecular species to a cavity of its own specific volume. In 
that sense, it should probably be regarded as a pragmatic rather than a 
theoretically based definition. 

Equation (18) reduces to eqn. (20) in the event that the various correlation 
factors are of unit value. We are inclined to believe that eqn. (18) is the more 
realistic means of representing the molar dipolar free energy of a regular 
binary mixture of associated liquids. 

SUMMARY 

We have considered a number of different ways of predicting ideal 
dielectric behavior in binary mixtures of associated polar liquids. Such 
predictions are helpful, if not necessary, for the interpretation of the 
measured dielectric properties of real hydroorganic systems. Of the various 
options, eqn. (5) is probably the most useful. The molar susceptibility of a 
real binary mixture can be calculated directly from the measured dielectric 
constant and density. Unlike the molar orientational polarizability and the 
molar dipolar free energy, its significance is not tied to any particular 
theoretical model. At the same time, its use is encouraged on the grounds 
that its predictions are virtually identical to those derived from eqn. (4) 
which is a generalization of Onsager’s theory. We have presented arguments 
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for considering eqn. (4a) as being representative of regular, as opposed to 
completely ideal, binary mixtures. Consequently, deviations of real molar 
suceptibilities of mixtures from the predictions of eqn. (5) represent the 
effects of departures from ideal entropies of mixing and might be interpre- 
ted in terms of structural reorganization,. 

Equation (9) is an intuitively reasonable means of defining dielectric 
ideality. There are, however, some problems in deciding how one ought to 
define the molar orientational polarizabilities of binary mixtures, particu- 
larly real mixtures. 

Equations (3) ought not to be regarded as more than a tentative sugges- 
tion as to how one might translate dielectric constants into quasi-thermody- 
namic quantities. There are problems in deciding how one should generalize 
that equation to describe the properties of binary mixtures. Nevertheless, we 
are inclined to the view that this is a useful property, and would be more so 
if one could extract, from the prevailing theories of polar liquids, a more 
explicit understanding of its significance. 

We are of the opinion that eqns. (4) and (14) represent different aspects of 
ideality, neither of which is complete. Equation (4) may be taken to 
represent the condition 

As,=0 (22) 
From Frohlich’s interpretation of Onsager’s theory, it would appear that 

this type of regular mixing must lead to a non-zero excess dipolar internal 
energy. 

Equation (14) represents the condition 

A$=0 

which requires that 

Ai7, = TAS, 

but does not require that either Au@ or A$ need to be zero. 

123) 

(24) 

That these two types of partial ideality are different from each other is 
supported by the differences in the respective “ideal” values of the mutual 
correlation factor g that they require. 

It is appropriate to comment that changes in relative molecular dipole 
orientations must affect not only those intermolecular energy contributions 
which directly involve the permanent dipole moments, and which are 
represented by quantities of the type c& and F;. but also dispersion energies 
which are not addressed in that context. 
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